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Abstract

We develop here a new class of finite volume schemes on unstructured meshes for scalar conservation laws with stiff

source terms. The schemes are of equilibrium type, hence with uniform bounds on approximate solutions, valid in cell

entropy inequalities and exact for some equilibrium states. Convergence is investigated in the framework of kinetic

schemes. Numerical tests show high computational efficiency and a significant advantage over standard cell centered

discretization of source terms. Equilibrium type schemes produce accurate results even on test problems for which the

standard approach fails. For some numerical tests they exhibit exponential type convergence rate. In two of our nu-

merical tests an equilibrium type scheme with 441 nodes on a triangular mesh is more accurate than a standard scheme

with 50002 grid points.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Consider the following multidimensional scalar conservation law with source term:

ou
ot

þ
XN
i¼1

oAiðuÞ
oxi

þ bðuÞ
XN
i¼1

oziðxÞ
oxi

¼ 0; tP 0; x 2 RN ; ð1:1Þ

uð0; xÞ ¼ u0ðxÞ; u0ðxÞ 2 L1 \ L1; ð1:2Þ
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with smooth functions Aið�Þ, ziðxÞ, bð�Þ, Ai 2 C1ðRÞ, ziðxÞ 2 C1ðRNÞ, 16 i6N , b 2 C1ðRÞ,

jr~zzðxÞj6Kz; Kz ¼ cst; bð0Þ ¼ 0; kb0kL1 6Kb; Kb ¼ cst; ð1:3Þ

where the unknown function uðt; xÞ belongs to R. Eq. (1.1) is endowed with the full family of entropy

inequalities

oSðuÞ
ot

þ
XN
i¼1

ogiðuÞ
oxi

þ S0ðuÞbðuÞ
XN
i¼1

oziðxÞ
oxi

6 0; ð1:4Þ

for all convex entropy functions Sð�Þ and corresponding entropy fluxes gið�Þ that are defined in accordance

with the relation

g0
iðuÞ ¼ S0ðuÞaiðuÞ; aiðuÞ ¼ A0

iðuÞ; ð1:5Þ

see Kruzkov [27], Lax [30] for more details.

A numerical difficulty which arises in connection with problem (1.1), (1.2) is to preserve, at a discrete

level, the ‘‘equilibrium’’, i.e., steady states given by

XN
i¼1

o

oxi
ðDiðuÞ þ ziðxÞÞ ¼ 0; ð1:6Þ

where

DiðuÞ ¼
Z u

0

aiðsÞ
bðsÞ ds < þ1; 16 i6N : ð1:7Þ

In [7] the class of equilibrium schemes have been introduced, i.e., solvers ensuring that

equilibrium initial data are maintained; ð1:8Þ

all the discrete entropy inequalities are valid; ð1:9Þ

approximate solutions are; locally in time L1 bounded: ð1:10Þ

For scalar conservation laws in one dimension the convergence of equilibrium schemes has been proved and

their computational efficiency has been demonstrated [7].

In single space dimension, i.e., when N ¼ 1, integration of Eq. (1.6) results in simple two point formulae

that enables to define discrete equilibria and to control (1.8). In several space dimensions integration of

(1.6) over some open domain X yields:Z
oX
hDðuÞ þ zðcÞ;~nnðcÞidc ¼ 0; ð1:11Þ

where h�; �i denotes scalar product in RN , c 2 oX,~nn ¼ ðn1; . . . ; nN Þ is unit normal vector of the boundary oX.

Even if we know u in some points on oX there is no way to compute the integral in left-hand side of (1.11)

exactly. Thus in multidimension it is difficult to define and make explicit the discrete equilibrium states.

That is why in [8] the requirement (1.8) has been modified and replaced by less general requirement on

maintenance of some specific equilibria. Here we reformulate the requirement from [8] in terms of locally

one dimensional equilibria.
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Definition 1. uðxÞ has a locally one dimensional equilibrium in direction ~nn in points xj and xk if

hDðuðxjÞÞ þ zðxjÞ;~nni ¼ hDðuðxkÞÞ þ zðxkÞ;~nni: ð1:12Þ

The following lemma gives sufficient condition for locally one dimensional equilibrium states.

Lemma 1.0.1. Solution of (1.6) uðxÞ has a locally one dimensional equilibrium in direction~nn in points xj and xk
if there exist open connected domain X such that

1: xj; xk 2 X;

2: hDðuðxÞÞ þ zðxÞ;~nni 2 CðfPN�1ðxj;~nnÞ [ PN�1ðxj;~nnÞg \ XÞ;

3: hDðuðyÞÞ þ zðyÞ;~sskðxÞi ¼ cxðyÞ; cxðyÞ ¼ cst; y 2 PN�1ðx;~nnÞ \ X; x 2 X n fxjg n fxkg;

where PN�1ðx;~nnÞ is N � 1 dimensional plane in RN , x 2 PN�1ðx;~nnÞ, PN�1ðx;~nnÞ ?~nn, 16 k6N � 1, f~sskgN�1
1 is a

basis in PN�1ðx;~nnÞ.

Proof of the lemma is given in Appendix A.

Notice that in several space dimensions locally one dimensional approach is often used for building of

computational algorithms, e.g., in finite volume framework. In line with this we replace (1.9) by the fol-

lowing requirement:

locally one dimensional equilibria are maintained: ð1:13Þ

Definition 2. Numerical schemes possessing the properties (1.9), (1.10), (1.13) are called equilibrium type

schemes.

Notice that equilibrium and equilibrium type schemes are equivalent in one dimension.

Convergence of the natural discretization of the source as bðuðtn; ~xjxjÞÞ � divzð~xjxjÞ is proved (see [8] for the

explicit kinetic schemes and [29] for the splitting algorithm); but it is well-known and we will see later that

the convergence to steady states is very slow. That is why construction and investigation of numerical

schemes for conservation laws with source terms have been addressed by several authors. Upwind methods
for the discretization of source term has been introduced by Bermudez and Vazqez [6] and then developed

further in [5,42] for unstructured mesh for the shallow water equations. Also in Gascon and Corberan [19]

equation with source term in single space dimension is written equivalently as homogenous equation by

means of integration of the source with respect to independent space variable. Then special upwind dis-

cretization of space derivative is used that results in upwind discretization of source term. Well balanced

schemes have been introduced by Greenberg et al. [23], and studied further in Greenberg-LeRoux et al. [24],

Gosse-LeRoux [21], Gosse [22]. The convergence of these schemes is proved in one space dimension for

scalar conservation laws with initial data possessing bounded variation. The method for balancing the
source term in the framework of Godunov type schemes has been introduced by LeVeque [32] and applied

to Euler equations with source terms [33]. Riemann solver developed in Jenny et al. [26] takes into account

viscous and source terms. Kinetic schemes with equilibrium conservation properties have been introduced

by Audusse et al. [3], Bristeau et al. [11], Perthame et al. [37] for Saint-Venant systems. Equilibrium schemes

have been introduced in Botchorishvili et al. [7] and then have been extended as equilibrium type schemes to

several space dimensions in [8]. The convergence of these methods is proved in the framework of kinetic

schemes with L1 initial data [7,8]. In Botchorishvili [9] an implicit approach for building schemes with
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equilibrium conservation property was studied. For shallow water equations special data reconstruction

procedure is proposed in Zhou et al. [43]. The procedure uses gradient of water level instead of water depth

and together with central cell centered discretization of source term ensures the so-called C-property; i.e.,

the scheme maintains certain equilibrium state defined as constant water level with zero velocity. In Jin [25]

it is shown that even second order approximation of steady state equation in conservative form can sig-

nificantly increase accuracy of computations. In finite difference framework correction procedure for

compensating the errors in approximation of source term is developed in Smolarkevich et al. [39]. In Ar-

vantis et al. [2] hyperbolic equations with stiff source terms are studied in the context of adaptive grids and
finite elements.

In this paper we introduce a new class of equilibrium type finite volume schemes on arbitrary un-

structured meshes that possess properties (1.9), (1.10), (1.13). Under some regularity requirement on mesh

refinement we prove their convergence to entropy solutions of (1.1), (1.2) and we demonstrate their effi-

ciency on a few numerical tests.

The paper is organized as follows. Section 2 is devoted to the construction of new equilibrium type

schemes. First we formulate the principle of design of the schemes. Then we construct the schemes in one

dimension and then in several space dimensions and we prove that they possess property (1.13).
In Section 3 we study the convergence of these new equilibrium type schemes in a kinetic framework, i.e.,

we consider the schemes with numerical flux functions admitting suitable interpretation at the kinetic level.

We derive the properties of the scheme. Then we recall kinetic formulation of scalar conservation laws [34]

and generalized kinetic solutions [7]. Related information on main convergence theorem for kinetic schemes

[7] and on its appication is given in Appendix C. We also recall regular mesh refinement [8] and under this

supposition on mesh refinement process we prove the convergence of our scheme to entropy solutions of

(1.1), (1.2).

In Section 4 we present the numerical results. They show that the scheme works well for a variety of
scalar conservation laws; it is far more accurate than the standard scheme, i.e., scheme with cell centered

discretization of source term, and it needs much less nodal points to ensure a comparable accuracy. The

effect of the various choices of finite volume cells for the same triangular meshes is studied as well. We have

gathered numerical evidence that the rate of convergence of our equilibrium type scheme increases together

with the refinement, while the rate of convergence of the standard scheme is below of 1 and close to zero.

This means that equilibrium type schemes have some exponential type convergence. We also introduce a

new numerical implementation for Dirichlet boundary conditions. Numerical tests show that our equi-

librium type scheme in conjunction with the developed numerical model of boundary conditions produces
accurate numerical results for initial-boundary value problems over domain with curvilinear geometry. In

the last subsection a test problem with a Dirac mass in the source is considered. The standard scheme is

unstable for this problem, while the equilibrium type scheme produces highly accurate approximate so-

lutions.

In Section 5 we give formal extension of our algorithm for systems of conservation laws.

2. Construction of the schemes

2.1. Principle of design

Observe that

bðuÞ ¼
PN

i¼1
oAiðuÞ
oxiPN

i¼1
oDiðuÞ
oxi

; ð2:1Þ
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where Di are defined by (1.7). In (1.1) substitution of bðuÞ by its expression defined by (2.1) yields the

following equation:

ou
ot

þ
XN
i¼1

oAiðuÞ
oxi

þ
PN

i¼1
oAiðuÞ
oxiPN

i¼1
oDiðuÞ
oxi

�
XN
i¼1

oziðxÞ
oxi

¼ 0: ð2:2Þ

We propose that (2.2) is a suitable form of scalar conservation law (1.1) to perform discretization of source

term in order to achieve high order precision at equilibrium states. Observe that if we are at equilibrium

state, i.e.

XN
i¼1

oAiðuÞ
oxi

þ bðuÞ
XN
i¼1

oziðxÞ
oxi

¼ 0;

then (1.6) is valid and we have:

XN
i¼1

oziðxÞ
oxi

¼ �
XN
i¼1

oDiðuÞ
oxi

: ð2:3Þ

Then substitution of right-hand side of (2.3) in (2.2) yields:

ou
ot

¼ �
XN
i¼1

oAiðuÞ
oxi

 
þ
PN

i¼1
oAiðuÞ
oxiPN

i¼1
oDiðuÞ
oxi

�
 

�
XN
i¼1

oDiðuÞ
oxi

!!
¼ 0; ð2:4Þ

i.e., ou=ot ¼ 0. We seek an algorithm, i.e., a discretization of (2.1), with the same property at the discrete

level. Suppose that Xjk is a subelement of a mesh, e.g., a triangle in two dimensions, or an union of such

subelements possessing one common node, e.g., a cell or some part of a cell. For clarity we set: Cj ¼ [Xjk,

where Cj denotes a mesh cell. We formulate the following four steps algorithm for the construction of the

scheme:

Algorithm

1. Perform a spatial discretization of
PN

i¼1
oAiðuÞ
oxi

on each cell Cj.

2. Find the corresponding discretization on each Xjk ensuring the following:

XN
i¼1

oAiðuÞ
oxi

�����
Cj

ðxÞ ¼ 1

jCjj
X
k

jXjkj
XN
i¼1

oAiðuÞ
oxi

�����
Xjk

ðxÞ; x 2 Cj:

3. Discretize (2.3) at the desired order of accuracy on each Xjk;

4. Discretize the source term according to the following principle:

Z
Cj

PN
i¼1

oAiðuÞ
oxiPN

i¼1
oDiðuÞ
oxi

�
XN
i¼1

oziðxÞ
oxi

dx ¼
X
k

Z
Xjk

PN
i¼1

oAiðuÞ
oxiPN

i¼1
oDiðuÞ
oxi

�
XN
i¼1

oziðxÞ
oxi

dx

¼
X
k

jXjkj

PN
i¼1

oAiðuÞ
oxi

���
XjkPN

i¼1
oDiðuÞ
oxi

���
Xjk

�
XN
i¼1

oziðxÞ
oxi

�����
Xjk

: ð2:5Þ
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Observe that by Step 3 the discrete steady states of the resulting scheme are defined by the relation:

XN
i¼1

oziðxÞ
oxi

�����
Xjk

¼ �
XN
i¼1

oDiðuÞ
oxi

�����
Xjk

: ð2:6Þ

By the same argument as in the continuous case it is easy to see that the resulting scheme preserves discrete

steady states defined by (2.6).
Notice that the discretization of source term uses some arbitrary discretization of the steady state Eq.

(1.6) and that is, at least formally, completely independent from the discretization of the space derivatives.

Thus the algorithm can be used in conjunction with first and high order schemes, finite difference, finite

element or spectral discretizations, explicit or implicit in time. Notice also that the algorithm presented

above just uses Eq. (2.1) in order to rewrite Eq. (1.1) equivalently as Eq. (2.2) that is more appropriate for

the discretization of source terms. Thus the above discretization algorithm is also valid outside of equilibria.

Some examples of application of the algorithm are given in next subsections.

2.2. The scheme in one dimension

In this subsection we apply the algorithm given above and build schemes for one dimensional (N ¼ 1)

nonlinear scalar conservation laws. Therefore we drop the subscripts when appropriate.
We set Cj ¼ ½xj�1=2; xjþ1=2�, Xj;j�1 ¼ ½xj�1=2; xj�, Xj;jþ1 ¼ ½xj; xjþ1=2�;

oA
ox

����
Xj;j�1

¼ 2

Dx

Z xj

xj�1=2

oA
ox

dx ¼ 2

Dx
ðAj � Aj�1=2Þ �

2

Dx
ðAðuj; ujÞ � Aðuj; uj�1ÞÞ;

oA
ox

����
Xj;jþ1

� 2

Dx
ðAðujþ1; ujÞ � Aðuj; ujÞÞ;

oA
ox

����
Cj

¼ 1

Dx
Dx
2

oA
ox

����
Xj;j�1

 
þ Dx

2

oA
ox

����
Xj;jþ1

!
� 1

Dx
ðAðujþ1; ujÞ � Aðuj; ujÞÞ þ

1

Dx
ðAðuj; ujÞ � Aðuj; uj�1ÞÞ;

oDðuÞ
ox

����
Xj;j�1

¼ 2

Dx

Z xj

xj�1=2

oD
ox

dx ¼ 2

Dx
ðDj� Dj�1=2Þ �

1

Dx
ðDðujÞ � Dðuj�1ÞÞ;

oDðuÞ
ox

����
Xj;jþ1

� 1

Dx
ðDðujþ1Þ � DðujÞÞ;

ozðxÞ
ox

����
Xj;jþ1

� 1

Dx
ðzjþ1 � zjÞ;

ozðxÞ
ox

����
for Xj;j�1

� 1

Dx
ðzj � zj�1Þ;

where Dx ¼ xjþ1=2 � xj�1=2. Observe that discretizatins of ozðxÞ=ox and oDðuÞ=ox enable to exactly recover

exact solutions of (2.3). Then first order monotone implicit equilibrium schemes write

unþ1
j � unj

Dt
þ
Aðunþ1

jþ1 ; u
nþ1
j Þ � Aðunþ1

j ; unþ1
j�1 Þ

Dx
þ
Aðunþ1

jþ1 ; u
nþ1
j Þ � Aðunþ1

j ; unþ1
j Þ

Dðunþ1
jþ1 Þ � Dðunþ1

j Þ
� zjþ1 � zj

Dx

þ
Aðunj ; unj Þ � Aðunj ; unj�1Þ

Dðunj Þ � Dðunj�1Þ
� zj � zj�1

Dx
¼ 0; ð2:7Þ

where the numerical flux function Aðu; vÞ is monotone, (see for e.g. [38]).
A variant of the above scheme can be obtained with different choice of Xj;j�1 in the algorithm of dis-

cretization of source term, namely, if we do not use subdivision of the cell and set Xj ¼ Cj. Explicit variant

of this scheme writes:
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unþ1
j � unj

Dt
þ
Aðunjþ1; u

n
j Þ � Aðunj ; unj�1Þ

Dx
þ
Aðunjþ1; u

n
j Þ � Aðunj ; unj�1Þ

Dðunjþ1Þ � Dðunj�1Þ
� zjþ1 � zj�1

Dx
¼ 0: ð2:8Þ

We can couple the approach for the constructing equilibrium schemes with high order monotone methods,
such as MUSCL [41], e.g., such scheme writes:

unþ1
j � unj þ

Dt
Dx

Aðunjþ1

�
� ; unj þ Þ � Aðunj � ; unj�1 þ Þ

�
þ Dt

Aðunjþ1�; unjþÞ � Aðunj�; unj�1þÞ
0:5ðDðunjþ1Þ � Dðunj�1ÞÞ

� zjþ1 � zj�1

2Dx
¼ 0; ð2:9Þ

where the so-called reconstructed values satisfy

unj� ¼ unj �
Dx
2

� rxðxjÞ; rx ¼ uxxðxnj Þ þ 0ðDx2Þ;

at least in the regions of smoothness and monotonicity, consult [20] and [31] for the several concrete choices

of the limiters.

The following lemma is evident due to the principle of design of the above schemes:

Lemma 2.2.1. The schemes (2.7)–(2.9) are exact on the equilibrium states of Eq. (1.1), N ¼ 1, defined by the
following relation:

Dðujþ1Þ þ zjþ1 ¼ DðujÞ þ zj: ð2:10Þ

Remark 2.1. All the above schemes are based on the formulae (2.1) for the representation of the function

bðuÞ. This formulae is not valid when aðsÞ ¼ 0 and bðsÞ 6¼ 0 that implies D0ðsÞ ¼ 0. At a discrete level, e.g.,

for the scheme (2.9), this is equivalent to the case when Dðujþ1Þ ¼ Dðuj�1Þ. But according to the exact steady

state Eq. (2.10) the latter can not occur at the equilibria unless zðxjþ1Þ ¼ zðxj�1Þ, i.e., when the equation is
homogenous in corresponding subdomain. That is why in such nodes and cell interfaces we apply standard

cell centered discretization of a source, see formulae (3.26), (3.27) and Remark 3.3 for details. We will see

later in Section 4 that this approach works well in practise.

2.3. Multidimensional cell centered discretization of the source terms

For (1.1) the monotone finite volume scheme with standard cell center discretization of a source can be

written as follows:

unþ1
j � unj

Dt
þ
X
k

X
l

jCl
jkj

jCjj
Aðunj ; unk ;~nnljkÞ þ

bðunj Þ
jCjj

X
k

X
l

jCl
jkjhzð~xkxkÞ;~nnljki ¼ 0; ð2:11Þ

u0
j ¼

1

jCjj

Z
Cj

u0ðxÞdx; ð2:12Þ

where h�; �i is a scalar product in RN , Aðunj ; unk ;~nnjkÞ is a monotone numerical flux function [38] satisfying usual

requirements on consistency:

Aðu; u;~nnÞ ¼ hAðuÞ;~nni;
Aðu; v;~nnÞ is Lifschitz continuous with respect to u; v;
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and on monotonicity:

Aðu; v;~nnÞ is nondecreasing in u and nonincreasing in v;

unj is approximate solution at time tn in nodal point ~xjxj of a mesh T, ~xjxj 2 RN ; j ¼ 0; 1; . . .; as before Cj are

cells associated with node ~xjxj and Cjk is the interface between cells Cj and Ck, Cjk ¼ Cj \ Ck, Cjk ¼ [lC
l
jk,~nn

l
jk

is the unit normal normal of Cl
jk directed into Ck, see also Fig. 1. Notice that cell interface Cjk can be

composed by several subinterfaces Cl
jk, e.g., as in case of median based cell Definition [1]. Notice also that

here and onward superscript l refers to subinterface number.

An example of monotone flux function is Engquist–Osher�s [18] which writes for unstructured meshes

Aðu; v;~nnÞ ¼
Z u

0

max 0;
XN
i¼1

aiðnÞni

 !
dn þ

Z v

0

min 0;
XN
i¼1

aiðnÞni

 !
dn: ð2:13Þ

2.4. Equilibrium type discretization of source term in several space dimensions

Observe that in one dimension we can integrate the steady state Eq. (1.6) explicitly in order to have

equivalent finite difference formulation, i.e., Eq. (2.10). In several space dimensions this is not possible in

general.

Observe that a local one dimensional approach would be in the line of finite volume method that uses the

same idea for the construction of numerical flux functions at cell interfaces. Thus for explicit finite volume

scheme, the analogue of (2.7) on unstructured meshes writes:

unþ1
j � unj

Dt
þ 1

jCjj
X
k

X
l

jCl
jkjAðunj ; unk ;~nnljkÞ þ

X
k

X
l

jCl
jkj

jCjj
Aðunj ; unk ;~nnljkÞ � Aðunj ; unj ;~nnljkÞ
hDðunkÞ;~nnljki � hDðunj Þ;~nnljki

� hzð~xxkÞ;~nnljki
�

� hzð~xxjÞ;~nnljki
�
¼ 0; ð2:14Þ

where z ¼ ðz1; z2; . . . ; zN Þ;D ¼ ðD1;D2; . . . ;DNÞ, Di are defined by (1.7).

Fig. 1. Cells in one and two space dimensions.
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Proposition 2.4.1. Finite volume scheme (2.14) is exact on locally one dimensional equilibrium states of Eq.
(1.1).

Proof. Under the assumptions of the lemma, equilibria of the Eq. (1.1) are defined by:

hDðunkÞ;~nnljki þ hzð~xxkÞ;~nnljki ¼ hDðunj Þ;~nnljki þ hzð~xxjÞ;~nnljki: ð2:15Þ

Thus if we are at equilibrium (2.15) are satisfied. Observe that

X
k

X
l

jCl
jkj

jCjj
Aðunj ; unj ;~nnljkÞ ¼ 0

according to the consistency property of the numerical flux function and the divergence theorem. Then

extracting hzð~xxkÞ;~nnjki � hzð~xxjÞ;~nnjki from (2.15) and substituting in (2.14) shows that unþ1
j ¼ unj , i.e., locally

one dimensional equilibrium data are maintained. �

Notice that standard scheme (2.11) discretizes source term in cell centers, i.e., using values at cell centers

only. Our equilibrium type scheme discretizes source terms at cell interfaces and this discretization is edge

based.

2.5. More accurate equilibrium type discretizations for arbitrary meshes

Observe that the equilibrium state in scheme (2.14) is defined by (2.15) and it is a true equilibrium under
the assumptions of Lemma 2.4.1. Thus in general (2.15) is not a good approximation of (2.3). For meshes

with median based cells a better accuracy for (2.3) can be achieved by the following:

X
k

X
l

jCl
jkj

2jCjj
hDðunkÞ
�

þ Dðunj Þ;~nnljki þ hzð~xxkÞ þ zð~xxjÞ;~nnljki
�
¼ 0: ð2:16Þ

Namely (2.16) can be a second order approximation of (2.3) in the sense of the local truncation error for

uniformly regular meshes. If in the algorithm for the building of the scheme we set Xjk ¼ Cj then corre-

sponding to (2.16) the finite volume scheme writes:

unþ1
j � unj

Dt
þ 1

jCjj
X
k

X
l

jCl
jkjAðunj ; unk ;~nnljkÞ þ

1

jCjj
X
k

X
l

P
k

P
l jCl

jkjAðunj ; unk ;~nnljkÞP
k

P
l jCl

jkj DðunkÞ þ Dðunj Þ;~nnljk
D E

� hzð~xxkÞ þ zð~xxjÞ;~nnljki ¼ 0: ð2:17Þ

Observe that other variants of the scheme with Xjk 6¼ Cj are possible as well. Notice that (2.17) can be put in
a simple and usual form of monotone schemes for homogenous equation with local time step

unþ1
j ¼ unj �

Dtj
jCjj

X
k

X
l

jCl
jkjAðunj ; unk ;~nnljkÞ; ð2:18Þ

where

Dtj ¼ Dt 1

 
þ
P

k

P
l jCl

jkjhzð~xxkÞ þ zð~xxjÞ;~nnljkiP
k

P
l jCl

jkjhDðunkÞ þ Dðunj Þ;~nnljki

!
: ð2:19Þ
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Notice that under the assumption of Lemma 2.4.1 the scheme (2.18), (2.19) is also equilibrium conserving.

Observe that the approach enables us to decouple discretization of the steady state equation from those of

the space derivatives. Thus high order accurate (at equilibrium states) numerical schemes for arbitrary

meshes should be easy to build: one needs only to replace (2.16) by higher order approximations of (1.6).

Clearly this is a formal construction and each scheme requires to be investigated separately but that is

beyond the scope of the present paper. Here we only give an example of the ‘‘local time step’’ of such second

order scheme

Dtj ¼ Dt 1

 
þ
P

k

P
l jCl

jkjhzð~xxljkÞ;~nnljkiP
k

P
l jCl

jkjhDðunljkÞ;~nnljki

!
; ð2:20Þ

where~xxljk is a center of Cl
jk ensuring that simple midpoint numerical integration formulae is exact for linear

functions.

3. Convergence of the schemes

In this section we study those equilibrium type schemes the numerical flux functions of which admit

interpretation in the framework of kinetic schemes (see [36] for details related to the kinetic schemes). For

scalar conservation laws such numerical flux functions verify:

Aðu; v;~nnljkÞ ¼
Z u

0

al
jk;þðnÞdn þ

Z v

0

al
jk;�ðnÞdn; ð3:1Þ

where

al
jk;þðnÞP 0; al

jk;�ðnÞ6 0; al
jk;þðnÞ þ al

jk;�ðnÞ ¼ ~aaðnÞ; ~nnljk
D E

:

We also suppose that for the mesh T a minimum angle condition is satisfied (that is a usual requirement
for finite element meshes for conservation laws). This means that each nodal point ~xjxj is surrounded

maximum of Kn neighbor nodes ~xkxk for which Cj \ Ck 6¼ ; holds true. Notice that the cell interface between

nodes j and k can be composed by several subinterfaces as it is in Fig. 1. We suppose that each interface

can consist of maximum lmax subinterfaces. Then any cell can have maximum K ¼ Knlmax subinterfaces. We

set

Dxmin ¼ min
j

min
ðk;Cjk 6¼;Þ

jCjj
jCjkj

; Dx ¼ max
j

max
ðk;Cjk 6¼;Þ

jCjj
jCjkj

; j~xjxj
�

� ~xkxkj
�
;

and suppose that there exists such dT that ðDx=DxminÞ6 dT. Notice that this condition ensures

jCij=jCjj6 dT, ðjCjkj=jCjjÞj~xjxj � ~xkxkj6 dT.

3.1. Properties of the scheme

Recall that if DðukÞ ¼ DðujÞ then in practise we replace equilibrium type discretization of a source by the

standard cell centered discretization, see Remark 2.1. Since the properties of standard cell centered dis-

cretization are known, see e.g. [9], we assume DðukÞ 6¼ DðujÞ throughout this subsection and study the

properties of our equilibrium type scheme (2.14).
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3.1.1. L1 estimate

Proposition 3.1.1. Assume that
1. u0 2 L1ðRN Þ,
2. (1.3) is satisfied,

3:
jal

jk;�ðnÞj
jhDðnÞ;~nnljkij

6Kajnj; ð3:2Þ

4. CFL condition

Dt
Dxmin

max
j

max
jnj6K1

X
k

X
l

jh~aaðnÞ;~nnljkij6 1; ð3:3Þ

K1 ¼ expðT � K � Ka � dTKzÞ � ju0jL1 ;

holds true.
Then the numerical scheme (2.14) satisfy

junj j6Ka; n6
T
Dt

: ð3:4Þ

Proof. We set:

q ¼
Aðunj ; unk ;~nnljkÞ � Aðunj ; unj ;~nnljkÞ

hDðunkÞ � Dðunj Þ;~nnljki
; ð3:5Þ

UðyÞ ¼ Aðunj ; y � unk þ ð1� yÞ � unj ;~nnljkÞ � q � hDðy � unk þ ð1� yÞ � unj Þ;~nnljki: ð3:6Þ

From (3.5), (3.6) we obtain:

Uð1Þ � Uð0Þ ¼ Aðunj ; unk ;~nnljkÞ � Aðunj ; unj ;~nnljkÞ � q � hDðunkÞ � Dðunj Þ;~nnljki;

0 ¼ Uð1Þ � Uð0Þ ¼ U0ðhn
jklÞ; 0 < hn

jkl < 1: ð3:7Þ

From (3.6), (3.7) we easily compute

q ¼
al
jk;�ðn

n
jklÞ

hD0ðnn
jklÞ;~nnljki

;

i.e., we have:

Aðunj ; unk ;~nnljkÞ � Aðunj ; unj ;~nnljkÞ
hDðunkÞ � Dðunj Þ;~nnljki

¼
al
jk;�ðn

n
jklÞ

hD0ðnn
jklÞ;~nnljki

; ð3:8Þ

where nn
jkl ¼ hn

jklu
n
j þ ð1� hn

jklÞunk for some 0 < hn
jkl < 1. According to (3.2) the expression (3.8) is

bounded by Kajnj. Thus source term of the equilibrium type scheme (2.14) can be controlled as

follows
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X
k

X
l

jCl
jkj

jCjj
Aðunj ; unk ;~nnljkÞ � Aðunj ; unj ;~nnljkÞ
hDðunkÞ;~nnljki � hDðunj Þ;~nnljki

� hzð~xxkÞ;~nnljki
������ � hzð~xxjÞ;~nnljki

������
6

X
k

X
l

jCl
jkj

jCjj
Ka � jnl

jkj � Kz � j~xjxj � ~xkxkj6K � Ka � Kz � dT �max
j

junj j: ð3:9Þ

Then using the standard technique on derivation of L1 bound for finite volume schemes, see e.g., [7,38], we

have the following estimate:

junþ1
j j6 ð1þ DtK � Ka � Kz � dTÞ �max

j
junj j:

The latter results in the validity of (3.4). �

Remark 3.1. Observe that the requirement (3.2) is satisfied by Engquist–Osher numerical flux function

(2.13), since

jal
jk;�ðnÞj

jhD0ðnÞ;~nnljkij
¼

jha�ðnÞ;~nnljkij
jhaðnÞ;~nnljkij

jbðnÞj6Kbjnj:

3.1.2. Entropy inequality

The scheme (2.14) is also written as

vnþ1
1j � unj
2Dt

þ
X
k

X
l

jCl
jkj

jCjj
Aðunj ; unk ;~nnljkÞ ¼ 0; ð3:10Þ

vnþ1
2j � unj
2Dt

þ
X
k

X
l

jCl
jkj

jCjj
Aðunj ; unk ;~nnljkÞ � Aðunj ; unj ;~nnljkÞ
hDðunkÞ;~nnljki � hDðunj Þ;~nnljki

hzð~xxkÞ � zð~xxjÞ;~nnljki ¼ 0; ð3:11Þ

unþ1
j ¼ 0:5 � ðvnþ1

1j þ vnþ1
2j Þ:

On account of (3.9) we have the estimate:

jvnþ1
2j � unj j6K � Ka � Kz � dT � K1: ð3:12Þ

Because of the monotonicity of the numerical flux function under the CFL condition (3.3) we have for

(3.10) the following in cell entropy inequality:

Sðvnþ1
1j Þ � Sðunj Þ

2Dt
þ 1

jCjj
X
k

X
l

jCl
jkjgðunj ; unk ;~nnljkÞ6 0; ð3:13Þ

where the entropy S is an arbitrarily smooth and convex function and g is the corresponding entropy flux

function,

gðu; v;~nnljkÞ ¼
Z u

0

S0ðnÞal
jk;þðnÞdn þ

Z v

0

S0ðnÞal
jk;�ðnÞdn: ð3:14Þ
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For (3.11) we have

Sðvnþ1
2j Þ � Sðunj Þ

2Dt
¼

S0ðfnþ1=2
jkl Þunj Þ
2Dt

ðvnþ1
2j � unj Þ

¼ �S0ðfnþ1=2
jkl Þ

X
k

X
l

jCl
jkj

jCjj
Aðunj ; unk ;~nnljkÞ � Aðunj ; unj ;~nnljkÞ

hDðunkÞ � Dðunj Þ;~nnljki
hzð~xxkÞ � zð~xxjÞ;~nnljki

¼ �S0ðunj Þ
1

jCjj
X
k

X
l

jCl
jkj

Aðunj ; unk ;~nnljkÞ � Aðunj ; unj ;~nnljkÞ
hDðunkÞ � Dðunj Þ;~nnljki

hzð~xkxkÞ � zðxjÞ;~nnljki þ wn
sj;

ð3:15Þ

where 06 hnþ1=2
j 6 1, fnþ1=2

jkl ¼ ð1� hnþ1=2
j Þvnþ1

2j þ hnþ1=2
j unj ,

wn
sj ¼ ðS0ðunj Þ � S0ðfnþ1=2

jkl ÞÞ
X
k

X
l

jCl
jkj

jCjj
Aðunj ; unk ;~nnljkÞ � Aðunj ; unj ;~nnljkÞ

hDðunkÞ � Dðunj Þ;~nnljki
hzð~xxkÞ � zð~xxjÞ;~nnljki:

Observe that in this formulae the sums can be estimated according to (3.9). For the first multiplier we have

S0ðunj Þ � S0ðfnþ1=2
jkl Þ ¼ S00ðnnþ1=2

jkl Þðunj � fnþ1=2
jkl Þ ¼ S00ðnnþ1=2

jkl Þ � ð1� hnþ1=2
j Þ � ðvnþ1

2j � unj Þ;

where minðunj ; f
nþ1=2
jkl Þ < nnþ1=2

jkl < maxðunj ; f
nþ1=2
jkl Þ: Notice that vnþ1

2j � unj can be controlled according to for-

mulae (3.12). Thus on account of these estimates we obtain:

jwn
sjj6 ðK � Ka � Kz � dT � K1Þ2 max

jujL1 6K1
S00ðuÞ � Dt: ð3:16Þ

With account of convexity of S and 3.10–3.16 we have the following in cell entropy inequality at macro-

scopic level:

Sðunþ1
j Þ � Sðunj Þ

Dt
þ 1

jCjj
X
k

X
l

jCl
jkjgðunj ; unk;l;~nnljkÞ

þ
S0ðunj Þ
jCjj

X
k

X
l

jCl
jkj

Aðunj ; unk ;~nnljkÞ � Aðunj ; unj ;~nnljkÞ
hDðunkÞ � Dðunj Þ;~nnljki

hzð~xkxkÞ � zðxjÞ;~nnljki � wn
sj 6 0; ð3:17Þ

where wn
sj vanishes together with time step.

The following proposition is a direct consequence of the above cell entropy inequality, Propositions 2.4.1

and 3.1.1.

Proposition 3.1.2. Assume that u0 2 L1ðRN Þ, (1.3), (3.2) are satisfied and the CFL condition (3.3) holds true.
Then numerical scheme (2.14) is equilibrium type scheme in the sense of (1.9), (1.10), (1.13).

3.2. Preliminaries

The first general method of proof of the convergence of numerical schemes has been introduced by

Kuznetsov [28]. The essential feature of this method is that it uses the doubling of variables technique at the

finite difference level introduced by Kruzkov [27] for the uniqueness study of entropy solutions for scalar

conservation laws. Doubling of the variables technique has been used by several authors for the proof of
the convergence of variety of numerical schemes, (see e.g. [12,13,15,38]).

Notice that different approaches exist as well: see Szepessy [40] for scalar conservation laws in single

space dimension, Coquel and Lefloch [14] in several space dimensions, Depres et al. [16] for linear advection

R. Botchorishvili, O. Pironneau / Journal of Computational Physics 187 (2003) 391–427 403



on arbitrary meshes. All these methods use some BV, weak BV or LV estimates in several space dimensions.

Method of proof that needs only uniform L1 estimate in order to ensure suitable compactness framework

does exist also. It is based on a kinetic formulation of scalar conservation laws (Lions, Perthame, Tadmor

[34]), on the main convergence theorem of Botchorishvili, Perthame, Vasseur [7] and on regular mesh re-

finement [8]. We briefly recall the latters in the next subsections and in Appendix D.

3.2.1. Kinetic formulation

Kinetic formulation of scalar conservation laws and related equations has been introduced by Lions et al.

[34]. This approach enables us to rewrite Eq. (1.1) and the family of entropy inequalities (1.4) as a single

kinetic equation with a ‘‘density’’ function vðn; uðt; xÞÞ,

vðn; uÞ ¼
þ1; 0 < n6 u;
�1; u6 n < 0;

0; otherwise:

8<
: ð3:18Þ

Kinetic formulation is very useful since it simplifies analysis of the problem; e.g., it allows a very simple
uniqueness proof [35]. In [7] the notion of kinetic solutions has been introduced; for (1.1) it writes:

Definition 3.1. Let f ðt; x; nÞ belongs to L1ð0; T ; L1ðRNþ1
x;n Þ \ L1ðRNþ1

x;n ÞÞ for all T P 0. It is a ‘‘generalized

kinetic solution’’ to (1.1), if

of ðt; x; nÞ
ot

þ
XN
i¼1

aiðnÞ �
of ðt; x; nÞ

oxi
�
XN
i¼1

bðnÞ � of ðt; x; nÞ
on

� oziðxÞ
oxi

¼ omðt; x; nÞ
on

; ð3:19Þ

in the sense of distribution for some nonnegative measure mðt; x; nÞ bounded on ½0; T � � RN
x � Rn for all

T > 0 which satisfies

06 signðnÞf ðt; x; nÞ ¼ jf ðt; x; nÞj6 1; ð3:20Þ

of
on

¼ dðnÞ � mðt; x; nÞ; ð3:21Þ

with mðt; x; nÞ some non negative measure such that
R
R

mðt; x; nÞdn ¼ 1 for all t; x.
It is easy to see that entropy solutions by Kruzkov [27] and Lax [30] and measure valued solutions by

DiPerna [17] can be interpreted in the framework of generalized kinetic solutions [7]. The uniqueness of

generalized kinetic solutions has been proved for conservation laws with source term [7]. The variant of the
theorem in several space dimensions is given in Appendix D.

3.2.2. Regular refinement

It is known that for arbitrary meshes, finite volume discretization of space derivatives provides low order
of accuracy only. Even in one dimension with numerical solution uniformly bounded but non smooth, it is

impossible to have suitable discrete integration by parts formulae, see e.g. [8]. But this can be achieved

under some hypotheses on the mesh refinement process. Namely, in order to use the main convergence

theorem stated above the following definition of mesh regularity has been introduced in [8]:

Definition 3.2. Mesh T is c-regular, if

1

jCjj
RjDxðT; nÞ

����
����6KRDxc; ð3:22Þ
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where KR is some positive constant,

RjDxðT; nÞ ¼
X
k

X
l

jCl
jkj h~aaðnÞ;~nnljkið~~xx~xxljk

 
� 0:5ð~xxj þ~xxkÞÞ þ

jh~aaðnÞ;~nnljkij
2

ð~xjxj �~xxkÞ
!
: ð3:23Þ

Notice that in two space dimensions uniform rectangular meshes with square cells and uniform triangular

meshes with standard hexagonal cell definition are the simplest examples of meshes admitting regular re-

finement in the sense of Definition 3.2, (see Fig. 2). It is easy to see that RDxðT; nÞ defined by (3.23) is equal

to zero for these meshes. For cartesian meshes smooth deformation of order Dx1þc in each coordinate

direction provide examples of nonuniform meshes with c regularity property. E.g. to have c-regularity of
nonuniform cartesian meshes we can set

xijþ1 � xijþ1 ¼ xij � xij�1 þ bj�1=2jxij � xij�1j
1þc

; 16 i6N ; jbj�1=2j6K:

Observe that RDxðT; nÞ is Lifschitz continuous with respect to nodal points. Thus the suitable displacement
of the nodes of uniform mesh at the distance jDx1þc ensures that the resulting nonuniform mesh possesses c
the regularity property with some constant Kjc (see Fig. 3 for examples of such nonuniform meshes).

Furthermore, convergence theorem stated in previous subsection enables us not to respect mesh regularity

requirement on the subdomains which have N -dimensional Lebesgue measure zero in the limit Dx ! 0.

Thus we are allowed to perform local mesh refinement in frames of c regularity, see an example in Fig. 4.

Lemma 3.2.1 (Sufficient condition of c regularity [8]). If

aðnÞ
����� � 1

2jCjj
X
k

X
l

jCl
jkjh~aaðnÞ;~nnljkixk

�����6K1Dxc; ð3:24Þ

~xxj

����� �
P

k

P
l jCl

jkj � jh~aaðnÞ;~nnljkij~xxkP
k

P
l jCl

jkj � jh~aaðnÞ;~nnljkij

�����6K2Dx1þc; ð3:25Þ

Fig. 2. Uniform rectangular and triangular meshes.

Fig. 3. Nonuniform smooth rectangular and triangular meshes.
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then mesh T is c regular with KR ¼ K1 þ K3 � K2 � dT,

K3 ¼
1

2
max
jnj6 ju0j

X
k

X
l

jh~aaðnÞ;~nnljkij
 !

:

Finally observe that for a given mesh T one can always determine suitable constant KR in a such way that

(3.24), (3.25) will be satisfied. Thus one can consider (3.22) as a requirement towards mesh refinement
process: it does not accept such mesh refinement that will destroy regularity of initial mesh.

3.3. Convergence theorem

Observe that equilibrium type scheme (2.14) discretizes source term at cell interfaces in nonlinear manner

that does not allow, in general, to have appropriate kinetic interpretation, i.e., suitable for the treatment in

the L1 weak* compactness framework. That is why we modify discretization of source term. The modified

scheme writes:

unþ1
j � unj

Dt
þ 1

jCjj
X
k

X
l

jCl
jkjAðunj ; unk ;~nnljkÞ þ

X
k

X
l

bljk
jCl

jkj
jCjj

hzð~xxkÞ;~nnljki
�

� hzðxjÞ;~nnljki
�
¼ 0; ð3:26Þ

where

bljk ¼
�bbljk if maxn2Iljk

al
jk�ðnÞ6 � Dxcb and j

P
1zj =

P
zj j6Ks;

bðunj Þ otherwise;

(
ð3:27Þ

Ks, cb are some fixed constants, 0 < cb < 1, Ks > 0,

�bbljk ¼
Aðunj ; unk ;~nnljkÞ � Aðunj ; unj ;~nnljkÞ
hDðunkÞ;~nnljki � hDðunj Þ;~nnljki

; ð3:28Þ

Iljk ¼ minðunk ; unk
�

� gljkKaK1KzDx1�cbÞ;maxðunk ; unk � gljkKaK1KzDx1�cbÞ
�
; ð3:29Þ

gljk ¼ signð�bbljk � hzk � zj;~nnljkiÞ ð3:30Þ

X
1zj

¼
X
k;l2Ilzjk

jCl
jkj

jCjj
hzðxkÞ;~nnljki
�

� hzðxjÞ;~nnljki
�
; ð3:31Þ

Fig. 4. Composite mesh with local refinement and derefinement.
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X
zj

¼
X
k

X
l

jCl
jkj

jCjj
hzðxkÞ;~nnljki
�

� hzðxjÞ;~nnljki
�
; ð3:32Þ

Ilzjk ¼ k; l : max
n2Iljk

al
jk�

(
> � Dxcb

)
: ð3:33Þ

Remark 3.2. (3.26) has the same equilibrium conservation property as (2.14) but this property may be lost

in the neighborhoods of the points where al
jk�ðunkÞ ¼ 0.

Lemma 3.3.1. Assume that u0 2 L1ðRN Þ, (1.3), (3.2), (3.3) are satisfied. Then numerical scheme (3.26), (3.27)
equivalently writes:

unþ1
j � unj

Dt
þ 1

jCjj
X
k

X
l

jCl
jkjAðunj ; unkl�;~nnljkÞ þ bsj

X
k

X
l

jCl
jkj

jCjj
hzð~xxkÞ;~nnljki
�

� hzðxjÞ;~nnljki
�
¼ 0; ð3:34Þ

bsj ¼ bðunj Þ �
P

k

P
lð1� signðbðunj Þ � bljkÞÞ hzð~xxkÞ;~nnljki � hzð~xxjÞ;~nnljki

� �
P

zj

; unkl� ¼ unk if bljk ¼ bðunj Þ:

Proof. Under assumptions of the lemma Proposition 3.1.1 is valid. Thus we have uniform L1 estimate (3.4)
and we can write:

~bbljkhzk
��� � zj;~nnljki

���6KaK1KzDx; ð3:35Þ

where ~bbljk is defined by (3.28). We set:

uðyÞ ¼ Aðuj; y;~nnljkÞ � Aðuj; uk;~nnljkÞ � ~bbljkhzk � zj;~nnljki:

Notice that

Aðuj; y;~nnljkÞ � Aðuj; uk;~nnljkÞ ¼ al
jk�ðvÞðy � ukÞ;minðy; ukÞ < v < maxðy; ukÞ;

and al
jk�ðvÞ < �Dxc if y 2 Iljk. We compute:

uðukÞ ¼ �~bbljkhzk � zj;~nnljki;

uðuk � gljkKaK1KzDx1�cbÞ ¼ al
jk�ðvÞ � ð�gljkKaK1KzDx1�cbÞ � ~bbljkhzk � zj;~nnljki

¼ � gljkðal
jk�ðvÞðKaK1KzDxþ j~bbljkhzk � zj;~nnljkijÞ:

Observe that v 2 Iljk and therefore

al
jk�ðvÞKaK1KzDx1�cb < �KaK1KzDx:

With account of the latter inequality we have:

signðuðuk � gljkKaK1KzDx1�cbÞÞ ¼ gljk; signðuðukÞÞ ¼ �gljk;
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i.e., u changes the sign on Iljk. Because uðyÞ is a continuous function the equation uðyÞ ¼ 0 has a solution

uljk� 2 Iljk,

Aðuj; uljk�;~nnljkÞ ¼ Aðuj; uk;~nnljkÞ þ ~bbljkhzk � zj;~nnljki:

Extracting Aðuj; uk;~nnljkÞ from the latter equation and substituting it into (3.26) with account of (3.27) yields

(3.34). �

Remark 3.3. Numerical scheme (3.34) can be interpreted as kinetic scheme

vnþ1
j ðnÞ � vn

j ðnÞ
Dt

þ 1

jCjj
X
k

X
l

jCl
jkjal

jk;þðnÞvn
j ðnÞ

�
þ jCl

jkjal
jk;�ðnÞvunjk;l�

ðnÞ
�

þ bsðnÞ �
ovn

j ðnÞ
on

� 1

jCjj
�
X
k

X
l

jCl
jkjhzk � zj;~nnljki ¼

o ~mmnþ1
j ðnÞ
on

; ð3:36Þ

where al
jk;� are defined according to (3.1), vn

j ðnÞ ¼ vðn; unj Þ, vn
jk;l�ðnÞ ¼ vðn; unjk;l�Þ,

o ~mmnþ1
j ðnÞ
on

¼
vnþ1
j ðnÞ � f nþ1

j ðnÞ
Dt

; ð3:37Þ

and solution at macroscopic level is recovered according to the formula unþ1
j ¼

R
Rn
f nþ1
j ðnÞdn.

Theorem 3.3.2. Assume that u0 2 L1ðRN Þ, (1.3), (3.2), (3.3) are satisfied Then approximate solution

uDxðt; xÞ ¼ unj for t 2 ½tn; tnþ1Þ and x 2 Cj, unj are defined by the scheme (3.26), (2.12), converges in
Lp
locð½0; T � � RN Þ, for all 16 p < 1, and all T > 0, towards the unique entropy solution to (1.1), (1.2) as

Dx ! 0 under c-regularity requirement on mesh refinement process.

Proof. Under suppositions of the theorem Propositions 3.1.1, 3.1.2, Lemma 3.3.1 are valid and the scheme

(3.26), (2.12) can be interpreted as kinetic scheme. Then the convergence follows from the Theorem 4.2 of

[8] where numerical scheme of the form (3.34) is studied. �

Remark 3.4. Some details on convergence of kinetic schemes in Ł1 weak* compactness framework can be

found in Appendix C.

4. Numerical test

In this subsection we present the results of our numerical investigation of these equilibrium type schemes

(2.14). In all numerical tests given below the Engquist–Osher numerical flux function is used for discreti-

zation of space derivatives.

4.1. Test problems

We consider scalar conservation laws in two space dimensions with monomial flux functions and source

terms:

ou
ot

þ o

ox
uc

c
þ o

oy
uc

c
þ z0xðx; yÞub þ z0yðx; yÞub ¼ 0; ð4:1Þ
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where b and c are some positive constants and the function zðx; yÞ is defined as

zðx; yÞ ¼ cosðpðxþ yÞÞ; 4:56 ðxþ yÞ6 5:5;
0; otherwise:

�
ð4:2Þ

or

zðx; yÞ ¼ sinðx2 þ y2 � 0:44Þ; x2 þ y2 < 0:44;
0; otherwise;

�
ð4:3Þ

or

zðx; yÞ ¼ J � sinð2xþ yÞ; x2 þ y2 < 0:44;
0; otherwise;

�
ð4:4Þ

where J is a parameter. Clearly the later function is discontinuous and J defines the magnitude of the jump.

We supply Eq. (4.1) with different initial and boundary conditions thus obtaining a variety of test

problems. In the four subsections below computational domain represents the square
f06 x6 5

ffiffiffi
2

p
; 06 y6 5

ffiffiffi
2

p
g and we use the following set of initial and boundary conditions:

uð0; x; yÞ ¼
ub; 0 < xþ y < 1; 0 < x < 5

ffiffiffi
2

p
; 0 < y < 5

ffiffiffi
2

p
;

0; 1 < xþ y < 10; 0 < x < 5
ffiffiffi
2

p
; 0 < y < 5

ffiffiffi
2

p
;

(

ou
ox

¼ ou
oy

on the border of the square:

ð4:5Þ

Steady state solution of the problem (4.1), (4.5) is given by the following simple relation:

uðx; yÞ ¼ uc�b
b

�
þ ðc � bÞðzð0; 0Þ � zðx; yÞÞ

�1=ðc�bÞ
: ð4:6Þ

In the last two subsections we start from a zero initial condition:

uð0; x; yÞ ¼ 0; ðx; yÞ 2 X; X � R2; ð4:7Þ

and we use the following Dirichlet boundary conditions

uðt; sÞ ¼ ubðsÞ; ð4:8Þ

where s belongs to the border of the domain under consideration, i.e. s 2 oX and ub is a given L1 function.

4.2. Testing the scheme in one dimension

In this subsection we present the results of computations of the test problem with homogenous initial

data in x > 0, Dirichlet boundary condition uðt; 0Þ ¼ ub and the function z defined by

zðx; yÞ ¼ ð3� xÞð7� xÞ sinðpxÞ; 36 x6 7;

0; otherwise:

�

The numerical results in Table 1 demonstrate that the equilibrium type scheme works in a stable and ac-

curate way for different choices of c and b, i.e., it is suitable for variety of equations.

R. Botchorishvili, O. Pironneau / Journal of Computational Physics 187 (2003) 391–427 409



4.3. Comparison with standard scheme

In Table 2(a) the numerical results are given for test problem (4.1), (4.5) with ub ¼ 2; c ¼ 2;b ¼ 1 and the

function z defined by (4.2). Uniform cartesian mesh is used in all computations presented in this subsection.

In the second column of Table 2 the term ‘‘standard’’ stands for the scheme with standard cell centered
discretization of source term, and the term ‘‘Equilibrium’’ corresponds to the scheme (2.14) given in Section

2.3.

Observe that by means of a change of variable we can reformulate the test problem (4.1), (4.5) as a one

dimensional problem along the diagonal of the square. Notice also that 2-D schemes, both with standard

and equilibrium type discretization of the source term, are equivalent to 1-D schemes on the lines parallel to

the diagonal of the square. In order to avoid huge computations and obtain the results faster for Table 1 we

have calculated corresponding 1-D problems, i.e., instead of 5001� 5001 nodes we have used 10 001 nodes

for equivalent scheme along the diagonal of the square, i.e., in one dimension. Pointing out from the results
given in Table 2 we can conclude that our equilibrium type scheme is far more accurate than the standard

one.

In Table 2(b) the results are given for the same test problem with c ¼ 3, b ¼ 1. We compare four different

schemes that differ from each other by different discretizations of source term only. Namely, we consider:

1. Standard scheme, i.e., scheme with cell centered discretization of source term.

2. Standard averaged scheme, i.e., the scheme that discretizes source term using some average of bðuÞ at

nodes of the stencil.

3. Standard upwind averaging, i.e., scheme that discretizes source term by means of using some average
of bðuÞ on an upwind stencil of Engquist–Osher numerical flux function. Notice that for the test prob-

Table 1

Equilibrium type schemes, one dimension, ub ¼ 7:1

Nodes c b CFL-number L1-error L1-error

100 3 1 0.7 1:724� 10�13 5:31741� 10�13

100 3 2 0.7 2:55795� 10�13 9:64346� 10�13

100 4 1 0.7 1:45661� 10�13 6:60302� 10�13

100 4 2 0.7 1:7648� 10�13 7:45532� 10�13

100 4 3 0.7 6:49258� 10�13 2:37005� 10�12

100 5 1 0.7 2:0505� 10�13 9:51069� 10�13

100 5 3 0.7 2:44249� 10�13 1:04679� 10�12

100 4 3 0.7 1:46994� 10�12 5:39048� 10�12

100 6 1 0.7 2:62901� 10�13 3:09086� 10�12

Table 2

Comparison of numerical schemes, uniform rectangular mesh

Grid Method CFL-number L1-error L1-error

(a)

5001� 5001 Standard 0.7 3:69� 10�3 5:56� 10�3

50� 50 Standard 0.7 0.1650527 0.4880051

40� 40 Equilibrium 0.7 1:5099� 10�14 7:13873� 10�14

(b) Eq. (4.1), c ¼ 3, b ¼ 1, CFL ¼ 0:7, time � 50
5001� 5001 Standard 0.248537 0.32204

5001� 5001 Standard averaged 0.2272184 0.301696

5001� 5001 Standard upwind averaged 6:67489� 10�3 3:3734� 10�2

21� 21 Equilibrium type 5:10703� 10�15 1:29148� 10�14
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lem that we consider here derivatives of flux functions are always positive and therefore upwind stencil

is fixed. Thus construction of the scheme is easy and in fact we do average bðuÞ across edges of the

upwind stencil. Observe also that some numerical schemes do use similar approaches for the upwind

discretizaton of source terms, e.g., see the introduction.
4. Our equilibrium type scheme.

From Table 2(b) we conclude that averaging gives some advantage over standard cell centered discreti-

zation but errors are still big. Upwinding of source term improves accuracy significantly. Advantage of our

equilibrium type scheme is evident: it produces much more accurate numerical solution than any other

considered scheme and at the same time it uses several thousands times less nodal points compared to

others. We will see in next subsections that equilibrium type scheme works in a stable and accurate way for

equations containing more complex nonlinearities and in more complex geometries.

4.4. Studying the rate of convergence of the scheme

We use the same test problem as in previous subsection. We introduce two indicators characterizing the

convergence of the scheme. The first one is the efficiency ratio defined as

efficiency ratio ¼ error for mesh T1

error for mesh T2

assuming that a mesh T2 is more refined than a mesh T1.
The second one is the rate of the scheme defined as follows:

ðmin: edge sizeÞrate ¼ error: ð4:9Þ

Computations are performed with different numbers of nodes on finite volume mesh with a definition of a

cell given in Fig. 6(a). The results are given in Tables 3 and 4, respectively for the equilibrium type and the

standard scheme.

Observe that we do not reduce the size of the space step by a factor of two while passing from one line to

the next one in Tables 3 and 4. Despite of this efficiency ratio is quite high for the equilibrium type scheme,
while for the standard scheme it is close by 1, see Table 4. The most interesting feature we can observe from

Table 3 is that the rate of the scheme increases together with mesh refinement that enables to conjecture

that equilibrium type scheme might have the exponential convergence property, see Fig. 5(a), though

formally it is first order accurate in space and in time in the sense of local truncation error. For the standard

scheme the convergence rate is close to zero that ensures very slow convergence of this scheme. This can

explain the fact that equilibrium type scheme ensures comparable with the standard one accuracy by means

of 56712 times less nodal points, compare the line 2 in Table 3 and the line 1 in Table 2(a), see also Table

2(b). Another disadvantage of the standard scheme is that it produces large errors on the large domain, see
Fig. 5(b) for the results along the diagonal of the square.

Table 3

Equilibrium type scheme, triangular mesh, CFL¼ 0.7

Nodes Triangles Min. edge L1-error Eff. ratio Rate

121 200 0.1 1:475� 10�2 – 1.83

441 800 0.05 1:32� 10�3 11.17 2.21

961 1800 0.033 1:4� 10�4 9.43 2.61

1681 3200 0.025 2:0� 10�5 7 2.93

2601 5000 0.02 5:0� 10�6 4 3.12
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Remark 4.1. Usually for the computation of the rate of the convergence of numerical schemes one uses the

ratio of errors on nested meshes. If we use this approach to define convergence rate then for standard

scheme we would have negative rate, see Table 4 lines 3 and 4. Notice that standard scheme is slowly

convergent and a real convergence starts only late together with sufficiently large number of nodes. That is

why we suppose that for the considered test problems formulae (4.9) is more suitable for the evaluation of
the convergence rate. Observe also that convergence rate defined in this way is the same for two different

meshes, see lines 4 and 5 in Table 4.

4.5. Studying the effect of a definition of a cell

Notice that for the same triangular mesh the cells of corresponding finite volume meshes can be defined

in several different ways; e.g., for the same triangular mesh one can define median based cell as it was

introduced in [1] or to define a cell by joining centers of gravity of the triangles surrounding the node as it

was used in [3]. For the building the cells, we use the later approach but not necessarily with a true center of

gravity of a triangle. From the c regularity condition, see subsection 3.3.3 and [8], it seems plausible that cell

definition should have some effect on the accuracy of computations since different cells give different re-

Fig. 5. Comparison of equilibrium type and standard schemes. (a) Convergence rates; (b) exact and approximate solutions.

Table 4

Standard scheme, triangular mesh, CFL¼ 0.7

Nodes Triangles Min. edge L1-error Eff. ratio Rate

121 200 0.1 7:294� 10�1 — 0.137

441 800 0.05 4:134� 10�1 1.76 0.294

961 1800 0.033 3:377� 10�1 1.21 0.318

1681 3200 0.025 5:59� 10�1 0.6 0.15

2601 5000 0.02 5:51� 10�1 1.015 0.15
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siduals. In order to investigate the problem numerically we have considered three different finite volume
meshes. For mesh0 for all triangles the ‘‘center’’ is defined in the same way, as an average of the vertices of

the triangle with coefficients 1/6, 1/6, 2/3, see Fig. 6(a). For meshA the ‘‘center’’ is defined in the same way

for couples of triangles. For the first triangle the ‘‘center’’ is the same as in previous case and for the second

one it is average of vertices of the triangle with coefficients 1/4, 1/4 1/2. example of corresponding cell is

given on Fig. 6(b); For meshB the ‘‘center’’ is defined in the same way for triples of triangles. For the first

two triangle the ‘‘center’’ is defined in the same way as in case of the meshA and for the third one the center

is the intersection of medians. Example of one of the possible cells for meshB is given in Fig. 6(c); Numerical

results of the same test problem as in previous subsection are given in Table 5. These results given in Table 5
indicate that different cell definition affects the precision of both, standard and equilibrium type, numerical

schemes. Pointing out from these results we can conjecture that accuracy of computations increases with

the regularity of finite volume mesh, e.g., compare the cells given in Fig. 6. We can also conclude that

equilibrium type scheme has high precision for any type of considered above cells.

4.6. Numerical model of boundary conditions. Testing the scheme in curvilinear geometry

In this subsection we introduce a numerical method for the treatment of Dirichlet boundary condition

for scalar conservation laws, see (4.8). Recall that boundary conditions for scalar conservation laws have

been introduced by Bardos et al. [4] via vanishing viscosity method. This approach enables to treat (4.8) in a

suitable way ensuring consistency with the entropy condition thus taking into account characteristic di-

rections. Consult [20] and references there in for various treatment of boundary conditions for hyperbolic
conservation laws at continuous and discrete levels. Here we propose one simple and useful numerical

model of boundary conditions. Notice that for bounded domains first we should precise further the defi-

nition of finite volume cells since for the nodes on the border it is impossible to apply the rule given above in

Section 4.5. The finite volume cells comprising nodal points on a border of a domain under consideration

Fig. 6. Cells of finite volume meshes: (a) mesh 0; (b) mesh A; (c) mesh B.

Table 5

Triangular meshes: 1681 vertices, 3200 triangles, CFL¼ 0.7

Mesh No. Standard Equlibrium type

mesh0 0.51909 2� 10�5

meshA 0.47189 1� 10�5

meshB 0.47004 4� 10�6

Comparison of L1-errors on different finite volume meshes.
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are called boundary cells. Suppose a triangulation of a bounded domain X is given and C is a border of this

domain. Then we can define boundary cells by means of the following procedure:

(i) joining midpoints of neighbor triangles comprising boundary node as a vertex; (ii) joining midpoint of

boundary edge to the boundary node and to the center of the triangle comprising boundary edge.

Observe that with this definition parts of a border are considered as ‘‘interfaces’’ of boundary cells. Now

the problem is to define numerical solution in the nodes on the border. Notice that due to hyperbolicity of

the scalar conservation laws, in general, in nodal points of the border we can not update approximate

solution by means of trivial treatment of Dirichlet boundary condition (4.8). That is why we introduce
numerical model of boundary condition that consists of the following three steps:

(i) extrapolate Dirichlet boundary data outside of domain, i.e., we set u ¼ ub in the vicinity of a border;

(ii) compute some averaged approximated solution in the boundary cell, i.e., if ~xjxj is nodal point on the

border we compute:

vnþ1
j � unj

Dt
þ

X
k;lCl

jk\C¼;

jCl
jkj

jCjj
Aðunj ; unk ;~nnljkÞ þ

X
k;lCl

jk\C6¼;

jCl
jkj

jCjj
Aðunj ; unbj;~nnljkÞ ¼ 0; ð4:10Þ

where unbj is boundary data computed in node ~xjxj at t ¼ tn.
(iii) Extrapolate this computed averaged value into the node on the border, i.e., we set unþ1

j ¼ vnþ1
j .

In order to test the developed equilibrium type scheme on domains with curvilinear geometry we couple the

scheme with the above numerical model of boundary conditions. We consider the test problem (4.1), (4.7),

(4.8), where c ¼ 2; b ¼ 1 and the prescribed boundary value function is constant. Namely, we set ub ¼ 2.
Then clearly exact steady state solution of initial boundary value problem (4.1), (4.7), (4.8) can be deter-

mined again by formulae (4.6). For this test problem we consider two different computational domains X.

One computational domain is an unit circle; boundary curve of another computational domain in para-

metric form writes:

t 2 ð0; 2 � PÞ; xðtÞ ¼ ð0:65þ sinð2:5 � tÞ2Þ � cosðtÞ; yðtÞ ¼ sinðtÞ:

Computation of the test problems are performed on three different triangular meshes, see Fig. 7, with CFL-

number 0.75. Each refined mesh contains double number of boundary nodes compared to precedent rough

triangulation, namely we have used 25, 50 and 100 boundary nodes. The function zðx; yÞ presented in the

source term of Eq. (4.1) is given in Fig. 8. Numerical results of computations of these two test problems are

given in Figs. 10–12. Namely, see Figs. 10 and 11 for convergence history on fine meshes and see Fig. 12 for

the streamlines of the error function defined as ðunumer � uexactÞ � F on three different meshes. The factor F
is different for different meshes, namely F ¼ 104; 104; 1012 for left and F ¼ 103; 103; 104 for right figure re-
spectively. We can observe that together with mesh refinement the errors decrease in the magnitude and

subdomains where errors are presented narrow substantially. Notice also that the complexity of the ge-

ometry affects the accuracy: the results are less accurate in more complex geometry. The latter can be also

ensured by the irregularity of the triangulation, see Fig. 7 right. More numerical results for Eqs. (4.1), (4.3),

(4.7), (4.8), ub ¼ 2, for different a and c are given in Table 6. We can conclude that the equilibrium type

scheme in conjunction with the above numerical model of boundary condition produces quite accurate

numerical solutions.

4.7. Studying the convergence of time marching procedure

We consider the same test problem as in previous subsection. Computational domain is unit circle with

triangulation corresponding to 50 boundary nodes, see Fig. 7. Computations for equilibrium type scheme
are performed for time interval ð0; 5Þ, for the standard scheme computations are done for time interval
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ð0; 100Þ. For some selected time moments the errors in L1 and L1 norms are given in Tables 7 and 8 for

standard and equilibrium type schemes respectively.

The advantage of equilibrium type scheme is evident. For t ¼ 3:2 it produces accurate numerical solu-

tion; namely the accuracy is of order 10�13 in L1 and L1 norms and this precision is maintained exactly in

further computations, i.e., jjunþ1 � unjj ¼ 0 when tn P 3:2. The standard scheme produces most accurate

solution at t � 17. Then for t � 42 the scheme converges to its steady state that is maintained exactly for

tn > 42. Observe that steady state of the standard scheme differ very much from the exact steady state

solution of the governing equation, e.g., see Table 7 for the errors.
Notice that equilibrium type scheme is consistent with unsteady equation. From the considered test

problem and computational results given in Table 8 we can conjecture that for t ¼ 3 exact solution of our

test problem coincides with steady state solution. But for t ¼ 3 the errors of standard scheme are over 1.

Fig. 7. Computational domains and triangular meshes.
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Thus we can conclude that standard scheme is also not suitable for calculation of nonstationary problems

because it produces highly erroneous approximate solution.

4.8. Studying dependence on CFL number

Notice that CFL condition dictated by Lemma 3.1.1 is too restrictive. That is why in all computations we

use the usual CFL condition for homogenous equation. We conjecture that this standard CFL condition

Fig. 8. Continuous function zðx; yÞ.

Table 6

Eq. (4.1), time � 2:5, L1-error, CFL ¼ 0:75, mesh with 50 boundary nodes

a b Fig. 7 left Fig. 7 right

3 1 4:92712� 10�13 1:67636� 10�13

3 2 2:36696� 10�13 4:7163� 10�13

4 1 2:10715� 10�13 5:12034� 10�13

4 2 1:98059� 10�13 1:23455� 10�13

4 3 2:96203� 10�13 6:22389� 10�13

Table 7

Convergence of time marching procedure, standard scheme, CFL ¼ 0:75

Time L1-error L1-error

2 1.4717 2.9347

3 1.2074 2.2197

5 0.8905 1.359

9 0.4914 0.53103

17 0.1511 0.1249

32 0.15502 0.1335

>42 0.15507 0.13357

416 R. Botchorishvili, O. Pironneau / Journal of Computational Physics 187 (2003) 391–427



produces time steps that are small enough to be suitable for computation of a contribution of a source for a

single time step. Then using the same CFL condition for the calculation of the next time step does already

take into account the contributions of a source done at previous time level. In order to check the conjecture

we study influence of various CFL numbers on accuracy of computations. The L1-errors in two different

time moments are given in Tables 9 and 10 for standard and equilibrium type schemes respectively. From

these results we can conclude that smaller CFL numbers do not give any advantage. Thus for the scalar

conservation laws with source term using of the standard CFL condition is acceptable.

4.9. Dirac mass in the source

When the function z is discontinuous then, clearly, Dirac mass appears in the source of Eq. (1.1). This is

the case with the function z defined by (4.4), see Fig. 9. Then Dirac mass is concentrated on the circle

defined by x2 þ y2 ¼ 0:44, i.e.the source tends to infinity on the above circle. In this subsection we consider

test problem (4.1), (4.7), (4.8), where X ¼ unit circle, c ¼ 2, b ¼ 1, ub ¼ 2. Also we consider various values

of the parameter J that controls the magnitude of jump in the discontinuity of the function zðx; yÞ.
Computations are performed for three different triangulations, see Fig. 7 left. The equilibrium type scheme
for these test problems produces accurate solutions: see Table 11 for errors computed for different values of

J , see Fig. 13 for the convergence history on fine mesh and see Table 12 for mesh refinement history. Notice

also that equilibrium type scheme gives good results for test problem with b ¼ 2, while standard scheme

with cell centered discretization of the source is unstable.

Table 8

Convergence of time marching procedure, equilibrium type scheme, CFL ¼ 0:75

Time L1-error L1-error

1.16 1.5939 0.1635

1.47 9:3109� 10�3 1:1663� 10�3

1.94 6:3418� 10�6 1:0936� 10�6

2.25 4:3038� 10�7 8:8194� 10�9

2.57 5:3965� 10�10 1:1876� 10�10

2.88 9:0514� 10�12 1:5963� 10�12

>3.2 2:4691� 10�13 1:7305� 10�13

Table 9

Standard scheme, dependence of L1-error on CFL-number

CFL time � 3 time � 42

0.1 1.2081 0.15507

0.4 1.2078 0.15507

0.75 1.2074 0.15507

0.9 1.2075 0.15507

Table 10

Equilibrium type scheme, dependence of L1-error on CFL-number

CFL time � 1:94 time � 3:2

0.1 7:2338� 10�6 1:5949� 10�12

0.4 7:0913� 10�6 4:281� 10�13

0.75 6:3418� 10�6 2:4691� 10�13

0.9 6:0478� 10�6 2:0696� 10�13
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5. Equilibrium type schemes for systems of conservation laws

In this subsection we present a formal extension of equilibrium type schemes for systems of conservation

laws. For the simplicity we consider the following system in one space dimension only:

o~uu
ot

þ o~AAð~uuÞ
ox

þ Bð~uuÞ o~zzðxÞ
ox

¼ 0; tP 0; x 2 R; ð5:1Þ

where ~uu is m-dimensional vector, ~AAð~uuÞ and~zzðxÞ are m-dimensional vector functions, Bð~uuÞ is m� m matrix.

We assume that corresponding to (5.1) steady state equation

o~AAð~uuÞ
ox

þ Bð~uuÞ o~zzðxÞ
ox

¼ 0; ð5:2Þ

Fig. 9. Discontinuous function zðx; yÞ.

Table 12

Mesh refinement history; discontinuous source term, J ¼ 1, CFL ¼ 0:75

Time Nodes on border L1-error

2.50018 25 3:30241� 10�3

2.50009 50 2:91488� 10�6

2.50008 100 1:43396� 10�8

Table 11

Jumps in the source, rough mesh¼ 25 boundary nodes, CFL ¼ 0:5, time � 7:0001, L1-errors

Jump 1 2 3 4 5 6 7

Error 1:135� 10�13 4:383� 10�13 2:485� 10�6 2:047� 10�6 1:427� 10�7 6:055� 10�8 1:057� 10�7
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can be equivalently written as

o~DDð~uuÞ
ox

þ o~zzðxÞ
ox

¼ 0; ð5:3Þ

where ~DDð~uuÞ is some vector function, referred onward as steady state flux function. We assume also that

½r~DD��1
exists. In order to apply the algorithm described in Section 2 some analogy of formulae (2.1) is

needed. (5.2) and (5.3) equivalently can be written as follows:

r~AAð~uuÞ o~uu
ox

þ Bð~uuÞ o~zzðxÞ
ox

¼ 0; ð5:4Þ

Fig. 10. Continuous source term. Initial-boundary value problem. Convergence history.
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r~DDð~uuÞ o~uu
ox

þ o~zzðxÞ
ox

¼ 0: ð5:5Þ

From (5.4) and (5.5) we easily derive the desired representation of matrix Bð~uuÞ,

Bð~uuÞ ¼ r~AAð~uuÞ � ½r~DD��1
: ð5:6Þ

Using (5.6) and following the algorithm given in Section 2 we propose the analogy of the scheme (2.8):

~uunþ1
j �~uunj

Dt
þ
~AAð~uunjþ1;~uu

n
j Þ �~AAð~uunj ;~uunj�1Þ

Dx

þr~AAð~uunjþ1;~uu
n
j ;~uu

n
j�1Þ � ½r~DDð~uunjþ1;~uu

n
j�1Þ�

�1 �~zzjþ1 �~zzj�1

Dx
¼ 0; ð5:7Þ

Fig. 11. Continuous source term. Initial-boundary value problem. Convergence history.
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where the elements of matrixes r~AAð~uunjþ1;~uu
n
j ;~uu

n
j�1Þ and r~DDð~uunjþ1;~uu

n
j�1Þ are defined according to the following

formulae:

aklð~uunjþ1;~uu
n
j ;~uu

n
j�1Þ ¼

~AAkð~uunjþ1;~uu
n
j Þ �~AAkð~uunj ;~uunj�1Þ

~uunl;jþ1 �~uunl;j�1

;

dklð~uunjþ1;~uu
n
j ;~uu

n
j�1Þ ¼

~DDkð~uunjþ1;~uu
n
j Þ � ~DDkð~uunj ;~uunj�1Þ

~uunl;jþ1 �~uunl;j�1

:

The subscripts k; l in the left-hand sides of the above formulae refer to the components of matrixes, in the

right-hand sides the subscript l refers to the elements of the vector. Observe that

Fig. 12. Continuous source term. Streamlines of ðunumer � uexactÞ � F on three different meshes; F ¼ 104, 104, 1012 for left and F ¼ 103,

103, 104 for right figure respectively.
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r~AAð~uunjþ1;~uu
n
j ;~uu

n
j�1Þ � ð~uunjþ1 �~uunjþ1Þ ¼ ~AAð~uunjþ1;~uu

n
j Þ �~AAð~uunj ;~uunj�1Þ; ð5:8Þ

r~DDð~uunjþ1;~uu
n
j�1Þ � ð~uunjþ1 �~uunjþ1Þ ¼ ~DDð~uunjþ1Þ � ~DDð~uunj�1Þ: ð5:9Þ

Proposition 5.0.1. Finite volume scheme (2.14) is exact on the equilibrium states of hyperbolic conservation
laws (5.1).

Proof. Observe that equilibria of Eq. (5.1) are defined by Eq. (5.1) integration of which yields the following

relation:

Fig. 13. Discontinuous source term. Initial-boundary value problem. Convergence history.
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~DDð~uunjþ1Þ � ~DDð~uunj�1Þ ¼ �ð~zznjþ1 �~zzj�1Þ: ð5:10Þ

Suppose initial data are at equilibrium. Then with account of (5.10), (5.9) we have:

r~AAð~uunjþ1;~uu
n
j ;~uu

n
j�1Þ � ½r~DDð~uunjþ1;~uu

n
j�1Þ�

�1 � ð~zzjþ1 �~zzj�1Þ

¼ �r~AAð~uunjþ1;~uu
n
j ;~uu

n
j�1Þ � ½r~DDð~uunjþ1;~uu

n
j�1Þ�

�1 � ð~DDð~uunjþ1Þ � ~DDð~uunj�1ÞÞ

¼ �r~AAð~uunjþ1;~uu
n
j ;~uu

n
j�1Þ � ½r~DDð~uunjþ1;~uu

n
j�1Þ�

�1 � r~DDð~uunjþ1;~uu
n
j�1Þ � ð~uunjþ1 �~uunj�1Þ

¼ �r~AAð~uunjþ1;~uu
n
j ;~uu

n
j�1Þ � ð~uunjþ1 �~uunj�1Þ ¼ �ð~AAð~uunjþ1;~uu

n
j Þ �~AAð~uunj ;~uunj�1ÞÞ:

Substituting approximation of source term with the latter expression in numerical scheme (5.7) yields:

~uunþ1
j �~uunj

Dt
¼ 0;

i.e., equilibrium initial data are maintained. �

Remark 5.1. Extension of the scheme to several space dimensions can be done exactly in the same way as

for the scalar equation in Section 2.4. In particular for the discretization of source term at cell interfaces we

can apply one dimensional algorithm in directions across/perpendicular to cell interfaces.

Remark 5.2. The presented algorithm is valid in the range of the validity of formula (5.6). Standard

discretization of the source with suitably selected weight can be applied for cell interfaces where r~DD is

degenerated. For some systems this approach can still capture all the equilibria exactly, as in the scalar

case, but not in general. Thus some adjustment of the presented algorithm can be needed for concrete

problems.

Appendix A. Proof of Lemma 1.0.1

Proof. Notice that xj, xk 2 X, X is open and connected. In X there exist some continuous curve c connecting

xj and xk. Denote d the distance between c and oX. Let r any positive number such that r < d. Denote

PN�1ðx;~nnÞ N � 1 dimensional plane in RN such that x 2 PN�1ðx;~nnÞ and ~nn ? PN�1ðx;~nnÞ. Denote p points on

these N � 1 dimensional planes. For every point x 2 c we call BrðxÞ, BrðxÞ � PN�1ðx;~nnÞ, N � 1 dimensional

ball of radius r and center x. Let Cr be ‘‘curvilinear cylinder’’, Cr ¼
S

x2c BrðxÞ. Under third supposition of

the lemma and from (1.11) over the cylinder Cr we have:Z
BrðxjÞ

hDðuðpjÞ þ zðpjÞ;~nnidpj �
Z
BrðxkÞ

hDðuðpkÞ þ zðpkÞ;~nnidpk ¼ 0:

Suppose L linear transformation, L : BrðxjÞ ! BrðxkÞ. With account of this the latter equation equivalently

writes:Z
BrðxkÞ

hDðuðLðpkÞÞ
�

þ zðLðpkÞÞ;~nnijLj � hDðuðpkÞ þ zðpkÞ;~nni
�
dpk ¼ 0:

Observe that according to our construction r < d, r is arbitrary positive number and under supposition of

the lemma the function under integral is continuous. Then the latter equation yields that the function under
integral is zero in xk, i.e., (1.12) is satisfied. �
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Appendix B. Uniqueness of generalized kinetic solutions

Theorem B.0.1 (Uniqueness of generalized kinetic solutions [7]). Let f ðt; x; n



Wi;DxðtÞ ! WiðtÞ in L1 � w�; WiðtÞ is continuous and Wið0Þ ¼ 0: ðC:19Þ

Then, as Dx ! 0, uDx converges strongly in Lpð½0; T � � RN Þ, 16 p < 1, to the unique entropy solution to (1.1),

(1.2).

Notice that the requirements of the main convergence theorem represent suitable approximations of the
conditions of the uniqueness theorem of generalized kinetic solutions, e.g., (C.13), (C.14) represent the

analogy of the kinetic Eq. (3.19); (C.15) ensures validity of the entropy inequality; (C.16) together with

(C.13) ensure consistency of the approximate solution with (3.19), (3.20); (C.17), (C.18) are approximations

of (B.11) and (B.12), respectively.

In order to prove the convergence of numerical schemes it is sufficient to verify that the scheme satisfies

the assumptions of the Abstract Convergence Theorem.

Appendix D. On verification of requirements of the abstract convergence theorem

Here we just briefly recall some important steps on application of the abstract convergence theorem

under suppositions of the Theorem 3.3.2 for Eq. (3.34).

(1) First the case of the compactly supported initial function u0ðxÞ is considered. Then general case can

be treated by means of the so-called standard diagonalization process of approximate solutions corre-

sponding to different compactly supported data, see e.g., [7].

(2) Verification of (C.16). L1 bound is controlled by Proposition 3.1.1. Because of the compactly sup-

ported initial value function, (1.3) and finite speed of propagation of perturbations, uniform L1 bound

ensures uniform L1 estimate.
(3) Verification of (C.13), (C.14). According to Lemma 3.3.1 numerical scheme (3.34) can be equivalently

written in a suitable form that accepts kinetic interpretation, see Remark 3.3. Notice that (C.13), (C.14) are

considered in a weak sense. For the derivation of (C.13) the standard technique is to multiply kinetic

scheme on un
j ðnÞ ¼ uðtn; xj; nÞ, uðt; x; nÞ is some test function, and then to apply integration by parts for-

mulae at a discrete level. In order to ensure (C.14) in several space dimensions we have additional re-

quirement on regularity of mesh refinement process. Estimation of WDx is given in details in [8].

(4) Derivation of (C.15). If nonnegativity of the measure mDx is known then its bound is easily recovered

just by means of integration of the discrete kinetic equation. In [7] verification of the nonnegativity of the
measure is based on Brenier�s lemma [10]. For the case under consideration application of this technique is

not possible and in cell entropy inequality is needed at macroscopic level. Notice that such entropy in-

equality is provided by Proposition 3.1.2. Then details can be found in [8].

(5) Derivation of (C.17)–(C.19). After step 2 this is trivial since application of the similar technique is

sufficient. Details can be found in [7].
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